Influence of Continuous Magnetic Field on the Performance of Molecularly Imprinted Polymers

نویسندگان

  • António R. Guerreiro
  • Vadim Korkhov
  • Irene Mijangos
  • Elena V. Piletska
  • Juris Rodins
  • Anthony P. F. Turner
  • Sergey A. Piletsky
چکیده

A set of polymers was imprinted with (-)-ephedrine using UV initiation, under the influence of a constant external magnetic with intensities ranging from 0 to 1.55T. It was shown that polymer morphology and recognition properties are affected by the magnetic field leading to considerable improvements in the performance of newly synthesised materials. Apparently the magnetic field improved the ordering of the polymer structure and facilitated the formation of more uniform imprinting sites. Introduction The effect of magnetic field (MF) on the physical and chemical properties of polymers has been under intense investigation (Chiriac and Simionescu, 2000; Chiriac et al., 2000). Polymers synthesised in the presence of a magnetic field often exhibit different properties and polymerisation kinetics when compared to polymers synthesised by traditional procedures (Chiriac et al., 2000). Even weak MF influences chemical kinetics and changes the activation energy and entropy for a chemical

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of a Selective and Sensitive Electrochemical Sensor Modified with Magnetic Molecularly Imprinted Polymer for Amoxicillin

A modified electrochemical sensor for the determination of amoxicillin (AMX) was reported in this paper. The magnetic molecularly imprinted polymer (MMIP) were suspended in AMX solution and then collected on the surface of a magnetic carbon paste electrode (CPE) via a permanent magnet, situated within the carbon paste electrode and then the voltammetry signals were recorded. It was confirmed th...

متن کامل

Separation of ‎STIGMA STEROL using magnetic molecularly imprinted nanopolymer fabricated by sol-gel method

Background & Aims: Magnetically molecularly imprinted polymers (MMIPs) are assumed as kind of sorbent polymers ‎which can separate or determine bioactive compounds from environment fast and specifically.  ‎Magnetic properties, stability at various conditions (temperature , ionic strength and pH) and selective ‎function are among the advantages of these polymers in determin...

متن کامل

Synthesis of a nanoporous molecularly imprinted polymers for dibutyl Phthalate extracted from Trichoderma Harzianum

In this study, molecularly imprinted polymers were synthesized for dibutyl phthalate as a bioactive chemical compound with antifungal activity which produced by Trichoderma Harzianum (JX1738521). The molecularly imprinted polymers were synthesized via precipitation polymerization method from methacrylic acid, dibutyl phthalate and trimetylolpropantrimethacrylate as a functional monomer, templat...

متن کامل

Are molecularly imprinted polymers (MIPs) beneficial in detection and determination of mycotoxins in cereal samples?

The process of matrix clean-up and extraction of analytes has a significant influence on the detection and determination of the analyte, especially in trace amounts. Molecularly imprinted polymers (MIPs) are solid particles that can absorb specific molecules regarding the template molecule used in the synthesis process of each type of MIP. As a result, they can be used in more effective and mor...

متن کامل

Are molecularly imprinted polymers (MIPs) beneficial in detection and determination of mycotoxins in cereal samples?

The process of matrix clean-up and extraction of analytes has a significant influence on the detection and determination of the analyte, especially in trace amounts. Molecularly imprinted polymers (MIPs) are solid particles that can absorb specific molecules regarding the template molecule used in the synthesis process of each type of MIP. As a result, they can be used in more effective and mor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009